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Abstract - Some recent advances in the application of the Proper Orthogonal Decomposition (POD) in
inverse analysis of steady state heat conduction problems are presented. The developed technique is aimed
at retrieving both the distribution of the convective heat transfer coefficients and the heat conductivities
of the constituent materials. The idea is to solve a sequence of direct problems within the body under
consideration to construct a reduced model. POD used at this stage serves two purposes: reduces the
number of DOFs necessary to describe the spatial distribution of the temperature and regularizes the
inverse problems by filtering out the noise. At the first step each retrieved parameter is sampled at
several levels in the vicinity of the predicted solution. Then a sequence of direct problems is solved
for all combinations of the sampled parameters. The resulting temperature fields at a predefined set
of internal and boundary points is obtained using the Finite Element Method (FEM). POD technique
applied to this sequence of discrete temperature fields produces a set of uncorrelated vectors (POD basis).
The temperature field is then approximated by a low-order model defined as a sum of the POD basis
vectors multiplied by unknown POD amplitudes. The latter are expressed as a linear combination of
the Radial Basis Functions (RBFs) depending on the retrieved parameters. The unknown coefficients of
this combination are evaluated from the condition that the low-order model should exactly reproduce
the snapshots. Finally, the sought after parameters are determined by least-square fit of the low-order
model to the measurement data. Numerical example shows the robustness and numerical stability of the
scheme. The technique is shown to be insensitive to the measurement errors, and capable of producing
a stable solution even in presence of large errors.

1. INTRODUCTION
The history of POD was started over 100 years ago by the work of Pearson [15]. At that time POD was
used as a tool of processing statistical data. Since then the technique was several times re-developed
in various fields including: signal processing and control theory [10], fluid flow and dynamics, turbu-
lence [1, 3, 7], human face recognition [8], process identification, adaptive control, image processing,
pattern recognition, weather prediction, oceanography, data compression, neural activity, and many oth-
ers. Depending on the area of application the method is known under several names: Karhunen-Loeve
Decomposition (KLD), Principal Component Analysis (PCA) or Singular Value Decomposition (SVD)
are just few of them. Some more recent description of POD theory can be found in [9, 19].

The aim of using POD in inverse analysis is to find the correlation between solutions of direct problems
corresponding to a certain set of assumed values of the parameters to be retrieved. POD produces low-
order high quality approximation of the field under consideration. The side effect of the application of
POD in inverse analysis is the filtration of the the noise in the temperature fields.

The paper presents a novel application of POD in inverse analysis, namely the possibility of simul-
taneous estimation of film coefficient distribution and heat conductivity of a body of complex shape
composed of several materials. As in our previous papers [4, 13], the proposed technique uses POD as
a regularization tool. This feature of POD results from its ability of reducing the number of unknowns,
without loosing the accuracy. Reduction of DOFs is a well known and efficient technique of filtering out
higher frequency errors being an essential mean of achieving stability of every inverse algorithm [2, 14, 17].
An arbitrary solution of the direct problem can then be expressed as a linear combination of only few
basis vectors. The significant reduction of degrees of freedom leads to good stability of the algorithm.
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Figure 1: Idea of snapshots.

2. FUNDAMENTALS OF THE PROPER ORTHOGONAL DECOMPOSITION
TECHNIQUE

The fundamental notion of POD is the snapshot, being a collection of N sampled values ui of the field
under consideration. The jth snapshot is stored in a vector Uj , j = 1, 2, . . . , M . The collection of snap-
shots, that are generated by changing some of parameter(s) upon which the field depends on, is stored in
the rectangular N by M matrix U. The sketch of a snapshot idea is presented in Figure 1. The snapshots
may be obtained either by (numerical) simulation or from experiments. As already mentioned, the idea
of POD has been re-developed several times staring from different viewpoints. The formulation based on
the Karhunen-Loève transformation approach employing Sirovich snapshot technique is presented here.

The aim of POD is to construct the set of orthonormal vectors (POD modes, POD basis vectors)
Φj , j = 1, 2, . . . , M resembling the original (snapshot) matrix U in an optimal way. The elements of the
basis are first expressed as a linear combination of the snapshots (Sirovich snapshot technique)

Φ = U ·V (1)
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where V stands for a modal matrix defined as a nontrivial solution of the following eigenvalue problem

C ·V = Λ ·V (2)
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In the above Λ is a diagonal matrix storing the eigenvalues λi of the positive definite covariance matrix
C. The entries of the latter are defined as

C = UT ·U (3)
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The eigenvalues are real and positive and should be sorted in a descending order.
It can be shown [3, 7], that if velocity is the field under consideration, the jth eigenvalue is a measure

of the kinetic energy transferred within corresponding (jth) mode Φj. Typically, this energy decreases
rapidly with the increasing number of the mode, which permits discarding the majority of modes. The
truncation of the POD basis is accomplished by deciding which fraction of the energy may be neglected
in further calculations. The resulting POD basis Φ̄, denoted as truncated POD basis, consists of K < M
elements (vectors):

Φ̄ = U · V̄ (4)
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The truncated POD basis (4) is ortogonal Φ̄T · Φ̄ = I and possesses optimal approximation properties. It
can be shown that there is no other orthogonal basis that transfers more energy within the same number
of modes.

Once the truncated POD basis is know, an arbitrary snapshot Ua can be approximated as

Ua = Φ̄ · ᾱa (5)
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where ᾱa stands for the amplitude vector associated with snapshot Ua.
Equation (5) can be seen as an analog of Fourier expansion of the snapshot into a sequence of the

POD vectors.
Resorting to the orthogonality of the truncated POD basis, the amplitude vector is evaluated from

the equation

ᾱa = Φ̄T ·Ua (6)
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The approximation formula (6) is, strictly speaking, valid only for snapshots that have been used to
construct the POD basis. However, because the snapshots describe a behavior of a specific physical
object, in practice the approximation holds also for arbitrary snapshots output by this object.
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3. PROPOSED APPROACH
Let k stand for a vector of the retrieved parameters. For the problem at hand, the entries of this vector are
unknown conductivities and some values of the film coefficient at selected nodes located on the boundary.

The first step of the inverse procedure, is the generation of the snapshot matrix. This is accomplished
by a numerical solution of a sequence of direct problems within the body under consideration. Taking
some user defined values of the vector of the retrieved parameters kj , j = 1, 2, . . . , M , the inverse problem
is transformed to a direct one, and as such can be solved using an arbitrary technique. The resulting
temperature field is then sampled at a set of points and stored as a vector (snapshot) Uj , j = 1, 2, . . . , M .
All snapshots are stored as columns of the snapshot matrix U. Once the matrix is generated, the truncated
POD basis Φ̄ is constructed employing the already described technique.

In standard POD applications [4], the amplitude vectors ᾱj are assumed to be constant. In the
proposed approach, the amplitudes are allowed to be a nonlinear function of the vector of the retrieved
parameters k. Specifically, each amplitude is expressed as a linear combination of a vector (Fj) being a
set of predefined interpolation functions fi(k), i.e.

Fj =




f1(kj)
...

fi(kj)
...

fm(kj)




(7)

This yields to
ᾱj = B · Fj (8)
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where the matrix B contains unknown values of the coefficients of the combination.
The set of interpolation functions fi(k) can be chosen arbitrary, however some choices (e.g. mono-

mials) could lead to ill-conditioned systems of equations that need to be solved in order to obtain the
coefficient matrix B.

In this study Radial Basis Functions (RBF) have been used as the interpolating functions. Due to their
nice approximation and smoothing properties RBFs are often used in multidimensional approximation,
pattern recognition etc. An overview of these functions is presented in [5, 6]. In the current study inverse
multiquadric radial function have been employed. This kind of RBF function has a form

fi(kj) = fi(|kj − ki|) =
1√∣∣kj − ki

∣∣2 + r2

(9)

where: r stands for user defined smoothing factor and ki, (also known as the node of the ith RBF), is
a known value of the k vector. In the proposed approach, the nodes ki, i = 1, 2, . . . M of the RBFs are
identical with the vectors kj , j = 1, 2, . . . M taken to generate the snapshots.

It can be seen, that the argument of the ith RBF is the distance between its node and and arbitrary
point kj .

To use efficiently approximation (8), the matrix B should be evaluated. This can be accomplished by
making this equation formula (8) exact for all snapshots that were used to generate the POD basis. This
requirement leads to a matrix equation

ᾱ = B · F (10)
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where: F is the matrix of interpolation functions defined as

F =




f1(|k1 − k1|) ... f1(|kj − k1|) ... f1(|kM − k1|)
...

...
...

fi(|k1 − ki|) ... fi(|kj − ki|) ... fi(|kM − ki|)
...

...
...

fM (|k1 − kM |) ... fM (|kj − kM |) ... fM (|kM − kM |)




(11)

with ki, kj - vectors of parameters used to generate ith or jth snapshot adequately, for i, j = 1, . . . , M .
The columns of matrix ᾱ are the vectors of amplitudes corresponding to subsequent snapshots. It

should be stressed that at this stage the matrix ᾱ is known, as it can be evaluated from

ᾱ = Φ̄T ·U (12)

Transposition of (10) yields
FT ·BT = ᾱT (13)

which is a set of linear equations with respect to the columns of matrix BT . Columns of the ᾱT matrix
are multiple right-hand side vectors of this set. If only the matrix FT is well behaved, solution of (13)
presents no difficulty. Due to its nice numerical features, the Singular Value Decomposition [16] has been
used at this stage.

After the coefficient matrix B is evaluated, a low dimensional model of the temperature field (5) can
be set as

Ua ≈ Φ̄BFa (14)
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This model, hereafter referred to as the trained RBF-POD network, is capable of reproducing tem-
perature fields that correspond to an arbitrary set of parameters k. Obviously, extrapolation outside the
range of k which was used to generate snapshots, can lead to poor accuracy of the model.

4. INVERSE PROBLEM FORMULATION
The trained RBF-POD network (14) is used to retrieve the values of the unknown parameters k.

This is accomplished by resorting to the condition that the network should reproduce a set of measured
temperatures in the least-square sense. Let yi, i = 1, . . . , m stand for the measured temperatures at some
locations and ua

i , i = 1, . . . ,m denote the values of the temperature at the same locations but calculated
from model (14). The least squares objective function takes then a form

Ψ =
m∑

i=1

(ua
i − yi)

2 (15)

The above least-squares problem can be solved by any technique (e.g. Levenberg-Marquardt, Genetic or
Evolutionary Algorithm). The sketch of the inverse problem formulation is presented in Figure 2.

5. NUMERICAL EXAMPLES
Reference direct problem
A coated, internally cooled gas turbine blade is considered. The reference forward problem is defined
as a 2D steady state temperature field with no internal heat generation and all boundary conditions
known. The heat conductivities of the blade core and coating material (Thermal Barrier Coating -
TBC), geometry and boundary conditions are depicted in Figure 3. Robin conditions are assumed along
the external perimeter of the blade and inside the cooling holes. The film coefficient is assumed to be
constant (400 W/m2K) inside the cooling holes, while along the outer boundary the known distribution
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Figure 2: Inverse problem formulation.
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Figure 3: Geometry and boundary conditions.

is prescribed (see Figure 4). The direct problem has been solved using MSC.Marc, a FEM commercial
code [11]. The numerical mesh consisted of 38772 quadratic (Tria 6) elements and 36497 nodes. The
result of the forward problem was the temperature field in the domain under consideration.

Inverse problem
Inverse analysis has been conducted in the above described domain. The aim of the inverse analysis was to
retrieve the unknown values of both constant heat conductivities (TBC, blade core) and the distribution
of the film coefficient along the part of the external blade perimeter (see Figure 5).

The snapshots have been generated by solving a sequence of forward problems for different values of
the retrieved parameters. The unknown distribution of the film coefficient has been described by a linear
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Figure 4: Film coefficient distribution along the external perimeter.

combination of Lagrange interpolating polynomials [18]

h(s) =
n∑

j=1

hjHj(s) (16)

where

Hj(s) =
n∏

k=1
k 6=j

s− sk

sj − sk
(17)

where s is the distance measured along the perimeters of the blade, sj , sk are nodes of the interpolation,
hj denotes the values of the heat transfer coefficient at these nodes and n stands for the number of
interpolation nodes. In the study the value n = 4 has been taken.

With such formulation the dimensionality of the parameter vector k is equal to 6 and the entries of
this vector are defined as two conductivities (core and TBC) and values of the heat transfer coefficient
at four nodes located on the boundary.

The snapshots were collections of 36497 nodal temperatures, total number of snapshots amounted to
729 for all possible combinations of parameters taken as:

• TCB conductivity: k1 = 0.6÷ 1.6 W/mK with uniform interval of 0.33,

• blade core conductivity : k2 = 11.0÷ 21.0 W/mK with uniform interval of 3.3,

• heat transfer coefficients hj at Lagrange nodes taking values of: 400, 580, 760 and 940 W/m2K.

The POD basis has been generated assuming that 10−9 of the energy of the signal is neglected, and a
truncated POD basis Φ̄ consisted of 11 vectors (modes). The values of subsequent eigenvalues associated
with these vectors are: 4.26× 1013, 4.30× 109, 6.09× 108, 2.36× 108, 1.67× 108, 3.53× 107, 1.59× 107,
2.46× 106, 1.40× 106, 1.19× 106, 3.46× 105, 2.51× 105, 2.15× 105, 1.60× 105, 1.21× 105, 9.34× 104,
6.55× 104, 1.49× 104, 8.85× 103, 8.25× 103. The remaining were below 5.05× 103. Rapid decay of the
eigenvalues confirms the strong correlation between the snapshots.
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Figure 5: Location of the temperature sensors.

The measurements have been simulated by taking the temperatures obtained by a solution of the
reference direct problem. Location of the sensors is shown in Figure 5. To simulate measurement error, a
uniform random error of specified amplitude (0.1, 1.0, 2.0 and 5.0K) has been added to the temperature
values. The distributed evolutionary algorithm was used to minimize the least-squares functional Ψ for
m = 40 sensors (see Figure 5). Several tests runs made for every error level input data and starting from
random population have been made. Best solutions were selected as the final result. The output of the
inverse analysis concerning the heat conductivities is shown in Figure 6. The comparison between exact
and estimated distribution of the film coefficient is shown in Figure 4.

At first sight the behavior of the error in Figure 7 might be considered strange. The best fit is obtained
not for the unbiased measurements, but for the case of error amplitude equal to 2K. The explanation
of this phenomenon lies in the much worse reproduction of the conductivity of the core material for the
data set corresponding to the amplitude of the measurement error 2K.

Another striking feature of the results is that even using unbiased measurements, the exact distribu-
tions of the heat transfer coefficient and heat conductivities have not been obtained. This comes from the
interpolation error committed when approximating the dependence of the amplitudes on the retrieved
parameters vector k by RBFs. This approximation is exact only at the selected values of the retrieved
parameters ki. This interpolation error can be reduced by taking more sets of parameters (increase M).
Another option is to repeat the entire analysis taking a new set of the parameter vectors located in the
vicinity of the already obtained solution of the inverse problem.

6. CONCLUSIONS
The advances in the application of the trained POD inverse technique to the solution of complex inverse
thermal problems have been presented. In the present paper the challenging task of simultaneous esti-
mation of unknown heat conductivities and film coefficient distribution of the cooled turbine blade has
been presented.

The most expensive portion of the analysis is the generation of the snapshots. It should be noted,
that these computations can be very easily parallelized. As a single solution of the direct problem does
not require data exchange with other computation units, the data transfer overhead is negligible.

The described technique has been used to solve several numerical examples [12] and proved to be a
reliable and stable tool of solving inverse problems. This nice behavior can be attributed to the excellent
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filtration properties of the POD basis which suppresses the high frequency noise.
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Dr WacÃlaw Kuś for providing them with his version of evolutionary algorithm.

REFERENCES

1. D. Ahlman, F. Soderlund, J. Jackson, A. Kurdila and W. Shyy, Proper orthogonal decomposition
for time-dependent lid-driven cavity flows. Num. Heat Transfer, Part B (2002) 42, 285–306.

2. J.V. Beck, B. Blackwell and C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, John
Willey and Sons, New York, 1985.

3. G. Berkooz, P. Holmes and J.L. Lumley, The proper orthogonal decomposition in the analysis of
turbulent flows, Ann. Rev. Fluid Mech. (1993) 25(5), 539–575.

4. R.A. BiaÃlecki, A.J. Kassab and Z. Ostrowski, Application of the proper orthogonal decomposition
in steady state inverse problems, Inverse Problems in Engineering Mechanics IV, (ed. M. Tanaka),
Elsevier BV, Amsterdam, 2003, pp.3–12.

5. R.L. Hardy, Multiquadric equations of topolography and other irregular surfaces. J. Geophys. Res.
(1971) 76, 1905–1915.

6. R.L. Hardy, Theory and applications of the multiquadric-biharmonic method: 20 years of discovery
1968-1988. Comput. Math. Appl. (1990) 19(8-9), 163-208.

7. P. Holems, J.L. Lumley and G. Berkoz, Turbulence, Coherent Structures, Dynamical Systems and
Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1996.

8. M. Kirby and L. Sirovich, Application of Karhunen-Loéve procedure for characterization of human
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